
DeltaCFS: Boosting Delta Sync for Cloud Storage
Services by Learning from NFS

Quanlu Zhang∗, Zhenhua Li†, Zhi Yang∗, Shenglong Li∗, Shouyang Li∗, Yangze Guo∗, and Yafei Dai∗‡
∗Peking University †Tsinghua University

‡Institute of Big Data Technologies Shenzhen Key Lab for Cloud Computing Technology & Applications
{zql, yangzhi, lishenglong, lishouyang, guoyangze, dyf}@net.pku.edu.cn, lizhenhua1983@tsinghua.edu.cn

Abstract—Cloud storage services, such as Dropbox, iCloud
Drive, Google Drive, and Microsoft OneDrive, have greatly
facilitated users’ synchronizing files across heterogeneous devices.
Among them, Dropbox-like services are particularly beneficial
owing to the delta sync functionality that strives towards greater
network-level efficiency. However, when delta sync trades com-
putation overhead for network-traffic saving, the tradeoff could
be highly unfavorable under some typical workloads. We refer
to this problem as the abuse of delta sync.

To address this problem, we propose DeltaCFS, a novel file
sync framework for cloud storage services by learning from the
design of conventional NFS (Network File System). Specifically,
we combine delta sync with NFS-like file RPC in an adaptive
manner, thus significantly cutting computation overhead on both
the client and server sides while preserving the network-level
efficiency. DeltaCFS also enables a neat design for guaranteeing
causal consistency and fine-grained version control of files. In our
FUSE-based prototype system (which is open-source), DeltaCFS
outperforms Dropbox by generating up to 11× less data transfer
and up to 100× less computation overhead under concerned
workloads.

I. INTRODUCTION

Cloud storage services, such as Dropbox [1], iCloud Drive,
Google Drive, and Microsoft OneDrive, have greatly facili-
tated users’ synchronizing files across heterogeneous devices.
Lying at the heart of these services is the data synchronization
(sync) operation which automatically maps the updates to
users’ local file systems onto the back-end cloud servers in
a timely manner [2].

Among today’s cloud storage services, Dropbox-like ser-
vices (e.g., iCloud Drive, SugarSync, and Seafile [3]) are
particularly favorable owing to their delta sync functionality
that strives towards greater network-level efficiency [4], [5].
Specifically, for synchronizing a file’s new version on the
client, only the incremental parts relative to the base version
on the server are extracted and uploaded. This can reduce
considerable network data transfer compared with simply
uploading the full content of the new-version file (as used
by Google Drive, OneDrive, etc.). Thus, it is especially useful
and economical for operations through wide area networks [2].

However, with increasingly prevalence of cloud storage ser-
vices, the upper-layer applications are getting more complex
and comprehensive, where delta sync can become not only
ineffective but also cumbersome. Such applications include
SoundHound [6], 1Password [7], continuity [8], [9], and so
forth [10], [11]. By carefully examining these applications, we

find a common root cause that undermines the effect of delta
sync: these applications heavily rely on structured data which
are stored in tabular files (e.g., SQLite [12] files), rather than
simple textual files (e.g., .txt, .tex, and .log files). For exam-
ple, today’s smartphones (like iPhone) regularly synchronize
local data to the cloud storage (like iCloud [13]), where a
considerable part of the synchronized is tabular data [14].

Confronted with the abovementioned situation, delta sync
exhibits poor performance, because it often generates intoler-
ably high computation overhead when dealing with structured
data. In detail, executing delta sync on a file requires scanning,
chunking, and fingerprinting on the file, thus consuming sub-
stantial CPU resources [4], [15]. As a result, blindly applying
delta sync to all types of file updates suffers from the one-
size-fit-all trap, and this problem is referred to as the abuse of
delta sync in cloud storage services.

To address the problem, in this paper we design DeltaCFS, a
novel file sync framework for modern cloud storage services
by learning from the seemingly antique while still widely-
used NFS (i.e., Network File System). DeltaCFS stems from
a practical insight that for certain types of file updates (e.g.,
appending bytes to a file, flipping bytes in a file, and removing
bytes at the end of a file), delta sync is largely unnecessary.
In these cases, directly intercepting file operations (which
we refer to as NFS-like file RPC) turns out to be the most
efficient way to precisely obtain the modified parts. Hence,
by leveraging the hints of typical file update patterns, we
adaptively apply two distinct incremental file sync approaches,
i.e., delta sync and NFS-like file RPC. The key novelty lies
in an elegant combination of the two approaches in a run-
time manner, using a customized relation table that extracts the
invariants of file update patterns. For example, in transactional
update (see § II-B) both old-version and new-version files
are always kept until the update is done. Our efforts can
significantly cut the computation overhead on both client
and server sides; meanwhile, the network-level (traffic usage)
efficiency is either preserved or optimized.

DeltaCFS also enables a neat design for guaranteeing causal
consistency and fine-grained version control of files. File sync
should offer basic guarantees of data integrity and consistency,
where version control is a plus appealing to users. However,
complicated data sync operations among the cloud and clients
can make data integrity and consistency fairly vulnerable,
since corrupted and inconsistent data on any client is likely

 0
 20
 40
 60
 80

 100
 120

 20 40 60 80 100 120 140 160 0
 20
 40
 60
 80
 100

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

CPU Upload Download

 0
 20
 40
 60
 80

 100
 120

 20 40 60 80 100 120 140 160 0
 20
 40
 60
 80
 100
 120
 140

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

(a) Dropbox

 0
 20
 40
 60
 80

 100
 120

 10 20 30 40 50 60 70 0
 20
 40
 60
 80
 100
 120
 140

Time (s)

(b) Dropbox

 0
 20
 40
 60
 80

 100
 120

 20 40 60 80 100 120 140 0
 20
 40
 60
 80
 100
 120
 140

Time (s)

(c) Seafile

 0
 20
 40
 60
 80

 100
 120

 10 20 30 40 50 60 0
 20
 40
 60
 80
 100
 120
 140

N
et

w
or

k
(M

B
)

Time (s)

(d) Seafile

Fig. 1. Client resource consumption. (a)(c) Synchronizing a Microsoft Word file (12MB), this file is saved 23 times. (b)(d) Synchronizing a SQLite file
(130MB) which stores chat history, the file is from a popular chat application. During the test, this file is modified 4 times (composed of 85 write operations)
with 688KB changed in total.

to be quickly propagated to all other relevant clients [16].
Based on DeltaCFS, we provide causal consistency for data
uploading and guarantee data integrity and consistency with
lightweight mechanisms.

We have built a prototype system of DeltaCFS 1 based
on FUSE and comprehensively evaluated its performance on
both PCs and mobile phones. Compared to Dropbox, up to
11× less data are transmitted by DeltaCFS in the presence
of representative workloads, and the savings of computation
resources on the client side range from 91% to 99%. On
the server side, DeltaCFS also incurs low overhead, 4× to
30× lower than Seafile, an open-source state-of-the-art cloud
storage service. 2 Finally, it is worth noting that although
DeltaCFS is currently implemented in the user space, it could
also be implemented in the kernel, e.g., as an enhanced mid-
layer working on top of virtual file system (VFS). Then, the
computation overhead of DeltaCFS can be further reduced.

Our contribution can be summarized as follows:
• We pinpoint the “abuse of delta sync” problem in Dropbox-

like cloud storage services and dig out its root cause (§ II).

• We design a novel file sync framework which efficiently
synchronizes various types of file updates by combining
delta sync and NFS-like file RPC (§ III). In particular, we
leverage a customized relation table to identify different
file update patterns in order to conduct data sync in an
adaptive and run-time manner. Also, we utilize lightweight
mechanisms to guarantee data integrity/consistency and
facilitate version control.

• We build a prototype system of DeltaCFS and compare its
performance with representative systems including Drop-
box, Seafile, and NFS. Comprehensive evaluation results
illustrate the efficacy and efficiency of DeltaCFS (§ IV).

II. BACKGROUND AND MOTIVATION

A. Delta Encoding

Delta encoding was researched a lot for efficient data
synchronization on wide area network [17]–[20]. There are
two representative algorithms: rsync [4] and CDC [5]. Rsync

1Both the source code and evaluation traces are available at https://github.
com/QuanluZhang/DeltaCFS.

2With respect to the server-side overhead, we do not compare the perfor-
mance of DeltaCFS with that of Dropbox since the server side of Dropbox is
generally opaque to us.

 0
 20
 40
 60
 80

 100
 120

 0 2 4 6 8 10 12 14 16 18 0
 5
 10
 15
 20
 25
 30
 35

C
P

U
 U

til
iz

at
io

n
(%

)

T
U

E

Time (Minute)

CPU
Upload

Fig. 2. Synchronizing WeChat’s data through Dropsync on Samsung
Galaxy Note3. WeChat [23] is a popular chat application. Dropsync [24]
is an autosync tool of Dropbox on mobiles. We set WeChat’s data folder
as Dropsync’s sync folder. TUE (Traffic Usage Efficiency) is total data sync
traffic divided by data update size [2].

divides files into fixed-size blocks, and computes rolling/strong
checksums to identify the same blocks. Notice that file updates
could lead to the shift of data in each fixed-size chunk, so
rsync has to redo the checksum computation each time a file
is modified, consuming considerable CPU resource. CDC uses
content defined chunking to detect the boundary of blocks,
thus only needs to compute the checksums of changed blocks.
But its network efficiency is not as good as rsync due to large
chunk size for low overhead of maintaining chuck checksums.

We examine the efficiency of the above methods in cloud-
based data sync systems by investigating two popular in-
stances, i.e., Dropbox and Seafile, which employ rsync and
CDC, respectively [21], [22]. As shown in Figure 1(c)(d),
Seafile shows moderate CPU consumption, but it uploads a
large amount of data given the large chunk size (default value
is 1MB). In contrast, Dropbox in Figure 1(a)(b) has much
better network efficiency than Seafile, but incurs a high cost
of CPU usage. Thus, Dropbox cannot apply rsync to save
network traffic for mobile clients. As shown in Figure 2, the
traffic utilization is low when we use Dropbox’s mobile client
to timely synchronize the data of WeChat to the cloud. Also,
we see that, even without rsync, the average CPU usage still
reaches 9%, and the frequent spikes in CPU usage keep the
device staying in high power-consumption mode.

IO consumption is another intrinsic flaw of delta encoding
algorithms. In order to obtain the modified content, the whole
file has to be scanned. Though it is not shown in Figure 1(b),
Dropbox issues over 700MB data read in that test. Excessive
data read could be a more serious performance killer than CPU

consumption, as it occupies disk bandwidth and consumes
memory for disk cache. On mobile devices, more storage IO
also means more energy waste [25], [26].

The quick takeaway is that CDC is not applicable due to
its poor network performance, while rsync puts too much
burden on host devices, which is unbearable for wimpy
mobile devices. Motivated by these observations, our goal is
to design an incremental data sync scheme with both high
network efficiency and low CPU consumption, which is also
lightweight enough for mobile situation.

B. Design Opportunities

WeChat: 1-2 create-write f journal, 3 write f, 4 truncate f journal 0
Word: 1 rename f t0, 2-3 create-write t1, 4 rename t1 f, 5 delete t0
gedit: 1-2 create-write tmp, 3 link f f∼, 4 rename tmp f

Fig. 3. Typical operation sequences for updating files. They are from three
popular applications on both desktop and mobiles. The numbers mean the
sequence of the operations.

To avoid the abuse of delta sync, we leverage the intercep-
tion of file operations to cut down the CPU usage of delta
encoding without sacrificing network efficiency. This design
exploits the update patterns of files to do incremental sync.
In particular, there are two typical update patterns: in-place
update and transactional update [14].

For in-place update, write operation only affects a small part
of the file with the remaining part untouched, such as SQLite
file or log file. Figure 3 shows the typical operation sequence
of SQLite in WeChat application, a journal file is first created
and written, then the third operation (i.e., 3 write f) directly
writes the changed data into the file f, which is exactly the
incremental data for the synchronization. For this pattern, our
basic idea is to intercept the write operation to directly obtain
incremental data, which avoids the checksum computation of
delta encoding and also has higher network efficiency than
block level delta encoding3. We call it NFS-like file RPC.

The other update pattern is transactional update, which is
widely used in various applications to avoid file corruption due
to system crash. In transactional update, the new version of a
file is first written to a temporary file rather than directly over-
writing its previous version, then it uses an atomic operation
such as rename, link to replace the previous version. Figure 3
illustrates the operations of this pattern used in Microsoft
Word and gedit (a text editor in linux). For transactional
update, intercepting written data does not work because any
file modification leads to a rewrite of the whole file. For this
pattern, our idea is to introduce a very lightweight version of
rsync to get the modified content. In particular, the interception
of file operations allows us to identify the relationship between
the previous version and the new version of a file, which
enables a direct comparison between them and thus prunes
the high cost of computing strong checksum in rsync.

VFS

FUSE Local File System

LibFuseFile Operations

I/O

Content

Delta

Encoding

Checksum

Store

Relation Table

Sync Queue

User

Kernel

Cloud

DeltaCFS

Fig. 4. DeltaCFS architecture. The grey rectangles are modules of FUSE
file system.

III. DELTACFS DESIGN

It is nontrivial to combine delta encoding and NFS-like
file RPC into one framework, because delta encoding deals
with files while NFS-like RPC deals with file operations, they
reside in different layers. In order to intercept file operations,
we base DeltaCFS on FUSE [27], a popular user space file
system. The high level architecture is shown in Figure 4.
DeltaCFS retrieves file operations from LibFuse. Before that,
file operations are originally issued to FUSE kernel module
through VFS and redirected back to LibFuse in user space.
This is how FUSE works. All the operations at last are issued
back to local file system.

In order to adaptively apply the two sync approaches, we
maintain a relation table which triggers delta encoding when
necessary. After this process, we get incremental data through
either delta encoding or NFS-like file RPC, and enqueue
these data to Sync Queue. Then, data in Sync Queue will be
uploaded onto cloud. Here, the cloud side should be modified
a little to support applying the incremental data generated by
clients to the corresponding files on the cloud. Sync Queue is a
key component in DeltaCFS, it facilitates the implementation
of incremental data sync, making it possible to combine
delta encoding and NFS-like file RPC seamlessly. We design
a new fine-grained version control mechanism also based
on Sync Queue. Moreover, in our design Sync Queue has
another functionality which is guaranteeing causal consistency,
while data integrity and crash consistency are guaranteed by
Checksum Store in user space.

A. Relation Table

We need to identify files’ update patterns correctly, in order
to apply the most efficient sync approach for each file. Here,
we apply NFS-like file RPC by default, and replace it with
delta encoding when transactional update is identified.

3The delta is at least one data block (e.g., 4KB in rsync) even though only
1 byte is modified

Time Line

File f

f_old
f_new

preserved

generated

(a)

Relation Table

rename f, t0

mknod t1

write t1

rename t1, f

unlink b

b -> tmp/b

f -> t0

delta(t0, f)

1. generate

2. trigger

3. compute

operation

sequence

Local File

System

LibFuse

(b)

Fig. 5. Transactional update. (a) Invariant of transactional update. (b) The
procedure of executing delta encoding based on relation table.

TABLE I
OPERATING RELATION TABLE AND TRIGGERING DELTA ENCODING.

Create relation entry
1. rename operation
2. unlink operation

Remove relation entry
1. triggered delta encoding
2. time out (e.g., 2 sec)

Trigger delta encoding
1. file’s name equals src

2. file’s name already exists

In order to identify transactional update, we extract invari-
ants from this update pattern as shown in Figure 5(a). Since
transactional update is mainly for tolerating file corruption
caused by system/application crash, one rule it has to follow
is that the file’s old version cannot be deleted before its
new version is safely written. More specifically, the file’s
old version is first preserved and very shortly the file is
created again with its new version atomically (e.g., rename).
Therefore, by tracking relations between files, i.e., maintaining
a relation table, we can identify transactional update.

The relation table, in essence, tracks the transformation of
files’ names. Each entry in the table is a tuple of two file
names (i.e., src→ dst), subject to two rules: 1) src and dst
was/is the same file’s name; 2) dst exists while src does not.
For instance, rename a, b generates a relation entry a → b.
This relation table is used to trigger delta encoding. When
a file is created, if its name is the same as src of an entry
in the relation table, delta encoding is triggered and executed
between this file and that entry’s dst. Figure 5(b) is an example
using the operation sequence of Microsoft Word in Figure 3.
The first rename generates a relation entry which indicates f ’s
old version is now preserved using file name t0. When f is
created again by the second rename, that relation entry triggers
delta encoding between f and t0.

Table I shows how to operate relation table and the con-
ditions of triggering delta encoding. Besides rename, unlink
can also generate an relation entry. Specifically, if a file is
removed (i.e., unlink), instead of immediately deleting this file,
we move it into a dedicated folder (e.g., tmp/) temporarily
and create a relation for it. This is useful for certain cases.
For example, transactional update could be accomplished with
a combination of link and unlink (e.g., link f f∼, unlink f).

Moreover, a bad file update could be first deleting the file then
writing its new version. However, if temporarily preserving the
file would result in ENOSPC (i.e., no space left on the device)
or the deleted one is a directory, the deleted files will not be
preserved and thus no relation entry is created. This has little
impact on data sync efficiency because very large files or files
in a deleted directory are unlikely to trigger delta encoding.

As demonstrated above relation entries can trigger delta
encoding. Here delta encoding could also be triggered if the
to-be-created file’s name has already existed (e.g., f in the
operation sequence of gedit in Figure 3), this is why there is
no need to create relation for link. At last, relation entries will
be removed from the relation table. If a relation entry triggers
delta encoding, it will be removed, while if it does not, it will
also be removed after a short period. Since a file update by
operating system usually can be done within 1 second, the
period can be empirically set in a range of 1 to 3 seconds.

In this new data sync framework, we can further reduce
rsync’s computational overhead. Note that when executing
delta encoding we have both the file’s old version and new
version locally. Most delta encoding algorithms, such as rsync,
are designed assuming the two files are on different machines,
so they transmit and compare strong checksums to check
whether two data blocks are the same rather than transmitting
real data blocks. In our design, we use bitwise comparison to
replace strong checksum. It can reduce a lot of computational
cost of rsync, as its checksums should be recalculated every
time a file is modified.

In-place update usually issues small writes, so NFS-like file
RPC is the most efficient sync approach. Here, we further
extend our design to deal with the case that in-place update
changes a large portion of a file (e.g., more than 50%) and
delta encoding could further compress the changes. Since delta
encoding is executed locally in DeltaCFS, file’s old version
is required. For in-place update we use a variant of physical
undo logging [28] to preserve file’s old version. Specifically, if
a write operation is going to overwrite old data, we will copy
the old data out before issuing the write operation. Thus, delta
encoding can still be executed locally by recovering the file’s
old version. This has little impact on performance, because the
data to be copied out are usually already cached in memory,
no disk IO is required.

B. Sync Queue

NFS-like file RPC and delta encoding generate incremental
data in different phases. The former generates incremental
data during a file is being updated, while the latter generates
incremental data after the file update is done. In DeltaCFS,
NFS-like file RPC is applied on every file by default, which
means written data are intercepted and obtained instantly
when file operations are issued. If we upload the written data
immediately when they are obtained, it would be useless to
execute delta encoding again. So the corresponding written
data should be replaced by the incremental data generated by
delta encoding before uploading.

write

write

write

write

write

rename unlinkdelta

write

write

write

Hash Table

packed & deleted

Fig. 6. Sync Queue. The nodes in Sync Queue are uploaded with a delay
(e.g., 3 sec).

Sync Queue is designed to facilitate this operation as shown
in Figure 6. Intercepted write operations are enqueued waiting
for uploading. If delta encoding is triggered, the corresponding
write will be removed from Sync Queue and the generated
delta is enqueued instead. Write operations to the same file
are linked to one node (called write node) in Sync Queue for
easy deletion, batching and compression. These write nodes
are indexed by a hash table. An incoming write finds its
corresponding write node through the hash table. If the node
does not exist, it creates a new one and appends it to Sync
Queue.

Write node should be packed to be an immutable node if its
corresponding file’s state is changed, such as closed, renamed,
deleted. Imaging if a write node is not packed and its file is
renamed away, then a new file with the same name is created
and written, the write operations would still be attached to that
node, leading to corrupted file content. The nodes between
rename and delta in Figure 6 reflect the operation sequence of
Microsoft Word in Figure 3. The writes to t1 are attached to
the write node which is packed after t1 is closed. Then this
write node is deleted because of triggered delta encoding.

C. Version Control

Since DeltaCFS is an incremental data sync system, it
relies on version control to apply incremental data on correct
files, especially when multiple clients modify the same file.
In our new data sync framework, version control should be
carefully designed, to provide proper version granularity, and
to minimize server’s involvement for less network message
passing.

Existing version control mechanisms are not applicable in
DeltaCFS. Open-to-close versioning [28], which is commonly
used in versioning file systems, does not support timely data
sync well as a file can be opened for a long time. Versioning
on every write is, however, too aggressive. In fact our Sync
Queue design naturally supports versioning on each node in
Sync Queue, which is a neat tradeoff between the above two
versioning granularities.

The nodes in Sync Queue are usually incremental data
which will generate a new version of a file. The problem is
who assigns the version number to the nodes in Sync Queue.
In existing Dropbox-like systems, version numbers are usually
assigned by the server side, because the version is increased

only when the new version of a file is uploaded to the cloud.
There is almost no cost for the server side to response with
a version number. However, in DeltaCFS the nodes in Sync
Queue should be assigned version numbers when they are
enqueued. If version numbers are retrieved from server each
time a node is enqueued, DeltaCFS’s performance would be
degraded a lot due to high network latency.

Thus, rather than relying on servers, we outsource version
assignment to clients. Each client has a monotonically increas-
ing number of its own to version files. Different clients do
not have to sync this number with each other even though
they share files, since partial order is enough in cloud sync
scenario. In order to make version numbers distinct among
different clients, we add client ID to version numbers, i.e.,
<CliID, VerCnt>. When uploading a node in Sync Queue,
the base version and new version numbers are attached to it.
If the base version is the same as the current version on the
cloud, the node can be applied normally and the version on
the cloud is updated to the new version.

In cloud sync scenario, users can always modify a local
file without checking whether it is the latest version. If two
clients share a file and edit this file simultaneously, a conflict
occurs. This conflict can be easily detected through our version
control mechanism, i.e., the incremental data’s base version
does not equal to the latest version on the cloud. The server
side employs the “first write wins” semantic to reconcile the
conflict, which is often used in popular cloud sync services. It
labels the first received one as the latest version and labels the
second one as a conflict version. In DeltaCFS a file becoming a
conflict version does not mean we have to drop the incremental
data and transmit this file again. Since servers keep recent
versions of files, the incremental data can still be applied to the
proper file to generate the conflict version. We do not employ
automatic merging such as three-way merge, because there
are various types of files in desktop environment, automatic
merging is only suited to plain text files.

D. Multi-client Data Sync

Multi-client sync can be efficiently supported by DeltaCFS.
In DeltaCFS the client uploads the incremental data to the
cloud, and the cloud applies those data to the corresponding
files. Here, if this client A also shares these files with another
client B (could be a user or a device), then client B is virtually
equivalent to the cloud, which means the same incremental
data can be directly sent to client B without additional com-
putation. So in DeltaCFS when the cloud receives data from
a client, besides storing the data it also forwards the data to
other shared clients.

Conflicts could also occur on those shared clients. For
example, a modification to a file by client A is forwarded to
client B by the cloud, at the same time client B is modifying
this file but has not uploaded the modification. The conflict
reconciliation in this case is very similar to that on the cloud,
so we do not repeatedly elaborate it.

write

write

rename unlinkdelta

backindex: 3

operation of other

applications

Fig. 7. Backindex. The write node is labeled as deleted when delta is
appended.

E. Integrity and Consistency

Recent trend shows that data integrity and consistency are
playing an increasingly important role in data sync scenario,
mainly because of the extremely deleterious effect of uninten-
tionally propagating corrupted/inconsistent data among all the
data copies [10], [16]. Below we illustrate the great opportu-
nities and convenience brought by our data sync framework
to guarantee data integrity and consistency.
Data integrity and crash consistency. Several types of file
systems have the ability of detecting corrupted data. However,
relying on a specific file system [29], [30] makes the data sync
system not portable. Unfortunately, it is also not possible to
detect corrupted data if residing above file system such as
those Dropbox-like systems, because they cannot tell whether
a file modification is from users or from corruption. In our data
sync framework, we can maintain checksums of data blocks to
detect data corruption, because all file operations go through
our system. The checksum in DeltaCFS is independent of file
system’s internal data structure and data layout.

We partition each file into fixed-length blocks (e.g., 4KB),
and generate a checksum for each block. The checksums are
stored in a key-value store, e.g., LevelDB [31] in DeltaCFS.
When a file is modified, DeltaCFS will update checksums of
the involved data blocks accordingly. When a file is read, the
data blocks will be verified using the checksums. If corrupted
data are detected, we use the correct data on the cloud to
recover. Moreover, since rsync also uses the same way to split
a file, we can reuse the rolling checksum in rsync as the block
checksum, which further reduces the computational cost.

The checksum in DeltaCFS is also used to detect crash
inconsistency. In the file system literature, crash inconsis-
tency means inconsistency between file system’s metadata and
data blocks due to system crash [16], [32], [33]. Since our
checksum design still resides above file system, it cannot
detect all crash inconsistency within file system. Instead, it
is a best-effort mechanism to find out the files in incorrect
intermediate state rendered by system crash, which provides
enough guarantee for users with little overhead. Normally,
after system crash we check every recently modified files
by comparing their data blocks with their checksums. If
inconsistency is detected, the correct version will be pulled
from the cloud, and we let users to decide which version to
keep.
Causal consistency. Eventual consistency of data sync ren-
ders a lot of anomalies. For example, a photo is created before

its thumbnail, if this order is not obeyed when uploading
files, it is possible that on a linked device the thumbnail
is the latest while the photo is not [16], [34]. Furthermore,
object data are created before they are indexed in tabular files,
eventual consistency can induce the situation that an object
indexed in tabular files does not exist [10]. Unfortunately, these
anomalies could lead to data loss or unpredictable behaviors
of applications. Thus, causal consistency is more suitable for
cloud data sync scenario.

In DeltaCFS causal consistency can be guaranteed in an
efficient manner by leveraging Sync Queue. Obviously, if Sync
Queue strictly follows the FIFO rule, it could natively guaran-
tee causality. However, the optimizations on Sync Queue such
as write node, delta encoding, violate FIFO. For example, there
is an operation sequence: create a, create b, create c, delete
a. If a is deleted from Sync Queue before it is uploaded,
it is possible for the cloud to only have b without a and c,
which is impossible for a strict FIFO queue. To solve this
problem, we could take snapshot on Sync Queue periodically
like ViewBox [16], and the cloud applies these snapshots in
a transactional manner. However, it has two problems, first,
when the snapshot is taken, no more changes are allowed on it
even though some nodes can be deleted; second, it is not easy
to set the snapshot interval, too short degrades performance
while too long may induce the loss of latest update.

So we design backindex to preserve causality in Sync
Queue. For Sync Queue the violation of causality is induced
by operating non-tail nodes (e.g., delete, batching writes), we
add a backindex on the node which is operated again after it
has been enqueued. The backindex points to the position where
that operation should be appended if Sync Queue follows strict
FIFO rule, i.e., the tail of Sync Queue when that operation
occurs. For example in Figure 7, when the write node is
deleted due to delta encoding, the node has a backindex
pointing to that delta node. All the operations covered by
the backindex should be applied transactionally on the cloud.
If there is interleaving between two backindexes, we merge
them to make sure that the consecutive nodes covered by those
backindexes are applied in a transactional manner.

Note that in DeltaCFS several files’ update might be en-
capsulated by one backindex, we view them as an atomic
operation. Specifically, if one file in this atomic operation has
conflict, we label all the files in this operation as conflict, and
let users to resolve conflicts manually, for example picking the
version they want or merging different versions.

IV. EVALUATION

In this section, we study the performance of DeltaCFS under
different types of workloads on both PCs and mobiles, and
compare it with alternative solutions and popular commercial
products to answer several questions: What is DeltaCFS’s
CPU consumption on both client and server sides? How
much network bandwidth is saved by DeltaCFS compared to
other solutions? Does DeltaCFS impact local file read/write
performance? What is DeltaCFS’s ability of guaranteeing data
integrity and consistency?

We implemented DeltaCFS with 2858 lines C code for the
client side and 435 lines C code for the server side. The
librsync library is modified to replace strong checksum (i.e.,
MD5) with bitwise comparison. We apply lock-free queue
technique [35] to implement Sync Queue. The server side
only has basic functionality for data sync. Functionalities
such as authentication, load balancing are out of the scope
of this paper. We use OpenSSL to encrypt all the transmitted
messages between the client and server sides.

A. Evaluation Methodology

For the evaluation, unless specified otherwise, we run the
experiments on two instances of Amazon EC2 m4.xlarge
which is equipped with 4 vCPU (Intel Xeon E5-2676 v3),
16GB memory, and running Ubuntu 14.04 (kernel 3.13). One
acts as client and the other is server. We call experiments
in this setting “experiments on PC”. In order to evaluate the
performance of DeltaCFS on mobiles, we use Samsung Galaxy
Note3 sn9009 which runs android 4.3 (kernel 3.4) as a client
to run experiments. This setting is called “experiments on
mobile”.

We use two artificial traces and two collected real-world
traces, which are typical and diverse enough to cover most
usage scenarios. The two artificial traces are append write (40
append operations, each append is around 800KB, the final
size of the file is 32MB) and random write (40 write operations
to a 20MB file, each write is 1010 bytes) respectively, the
interval of the writes are 15 sec. We collected real-world traces
from Microsoft Word and Tencent WeChat respectively, using
a similar method to [14]. Specifically, we use a loopback
user-space file system 4 to collect file operations including
the content of the written data. The Word trace is collected
when we edit and save a Word document 61 times with its
size changing from 12.1MB to 16.7MB. In the WeChat trace,
the SQLite file which stores chat history is modified 373
times, and its size changes from 131MB to 137MB. In all the
experiments below, we perform 5 runs and report the average
numbers.

We compare DeltaCFS with three different sync solutions:
Dropbox, Seafile and NFSv4 [37]. For Dropbox, we use its
linux version 3.12.5. The client version of Seafile we use
is 4.3.2 and the server version is 5.0.2. For experiments on
mobiles, instead of comparing with Dropbox Android app
which only supports syncing data manually, we compare
DeltaCFS with Autosync Dropbox (i.e., Dropsync [24], ver-
sion 2.7.12) whose backend storage is still Dropbox, but it
supports automatic data sync like Dropbox desktop client.
Seafile is not compared on mobiles because it does not support
automatic data sync and there is no third-party application to
do it.

B. CPU Consumption

1) Experiments on PC: The CPU overhead of the four
solutions are shown in Table II. On the client side, Dropbox

4We use Dokan [36] for Windows.

consumes considerable CPU resource compared to other solu-
tions. This is mainly induced by its delta encoding mechanism.
Rsync is CPU intensive, and it is very likely that Dropbox
offloads checksum recalculation to the client side [38] which
means the client rather than the server recalculates checksums
of the updated files. Though this reduces the burden of the
server, it further overwhelms the client. Other mechanisms
in Dropbox also generate some CPU overhead. For example,
Dropbox applies deduplication in 4MB granularity [2], which
imposes certain computation overhead. Though the deduplica-
tion perfectly works for simple data upload, it does not per-
form well in file editing scenario, in which file content usually
shifts for a certain offset [38]. Dropbox also employs network
data compression, which consumes some CPU resource. As
will be shown in § IV-C, though DeltaCFS does not apply data
compression, it shows high network efficiency, thus, the CPU
resource used by data compression can be saved. Seafile’s low
CPU overhead benefits from the delta encoding it uses (i.e.,
CDC) and its relatively large chunk size i.e., 1MB.

DeltaCFS, on the other hand, presents the lowest CPU us-
age. For append write and random write, delta encoding is not
necessary, DeltaCFS directly retrieves and uploads the written
data, while Dropbox and Seafile spare no effort to scan files
and calculate delta. So DeltaCFS shows an order of magnitude
less CPU overhead even compared to Seafile. For Word trace,
though DeltaCFS also applies rsync, our optimization of the
rsync algorithm and triggering rsync execution at the right
time reduce a lot of CPU overhead. Dropbox performs not
as good as we thought, mainly because its delta encoding is
triggered by file modification events (i.e., inotify [39]) which
occurs much more frequently than our relation triggered delta
encoding. For the WeChat trace, the advantage of DeltaCFS is
very high. Since files in the WeChat trace is larger than that
in the other three traces while every update is relatively small,
both Dropbox and Seafile consume higher CPU resource to
generate delta. On the contrary, DeltaCFS show the opposite
trend and its CPU overhead is extremely low, as delta encoding
is not applied.

On the server side, DeltaCFS shows very low CPU con-
sumption, the reason is that we have minimized the overhead
on the DeltaCFS server, it only needs to apply incremental
data generated by clients. Though a full blown server may
consume more CPU resource, we believe it cannot be high,
because functions such as authentication, high concurrency
support, only induce limited CPU overhead. Seafile also
imposes relatively low CPU overhead on the server as the
server also does not have to calculate chunk checksums. When
executing CDC, the checksums for the new chunks will be
calculated on the client anyway and can be directly sent to
the server. For Word trace, the CPU overhead of NFS is
around twice as large as Seafile, because though NFS server
does not compute any checksum, it has to send and receive
large amount of data through network, as will be illustrated
in § IV-C, which also consumes a lot of CPU resource. For
WeChat trace, NFS consumes a few CPU cycles due to much
less data transmission.

TABLE II
CPU USAGE OF DIFFERENT SYNC SOLUTIONS. The first four rows are the experiments on PC (i.e., EC2 instance), while the last two rows are the

experiments on mobile (i.e., Note3). We are unable to measure Dropbox server’s CPU usage. NFS client’s CPU usage is also skipped as they are callback
functions in kernel. The unit is CPU tick.

Solutions
Append write Random write Word trace WeChat trace
Client Server Client Server Client Server Client Server

Dropbox 2726 – 3403 – 9787 – 13463 –
Seafile 476 60 540 61 1060 437 3127 247
NFSv4 – 6 – 4 – 884 – 25
DeltaCFS 56 5 42 3 858 89 83 8

Dropsync 28880 – 28048 – 21178 – 25356 –
DeltaCFS 817 8 466 4 7995 176 1141 11

2) Experiments on mobile: The numbers are shown in the
last two rows in Table II. Since a CPU tick in different types
of CPUs has different computational power, those numbers
are not comparable with the numbers in the first four rows
in Table II. For append write and random write, Dropsync
consumes around 34-59X higher CPU resource than DeltaCFS,
because though it does not employ rsync, it has to load the file
from disk and transmit the whole file through network evey
time the file is modified. Since the bandwidth of wide area
network is very low, Dropsync keeps transmitting data during
the whole experiment. Word trace and WeChat trace take
several minutes to finish, during this period files are uploaded
several times, so the CPU consumption is also very high.
DeltaCFS shows much lower CPU consumption for Word trace
though we apply rsync.

C. Network Transmission

During measuring CPU consumption of different solutions
using various traces, we also measured their data transmission.

1) Experiments on PC: The results on PCs are shown in
Figure 8. For append write, Dropbox, NFSv4 and DeltaCFS
present similar upload traffic. It is obvious that NFSv4 and
DeltaCFS have similar performance. Dropbox shows good
performance due to its small chunk size, while Seafile’s chunk
size is too large, so it has poor network performance. Random
write in Figure 8(b) shows similar numbers to append write.
Here Dropbox uploads 4MB more data than NFSv4 and
DeltaCFS, because every random write is 1010 bytes while
Dropbox’s chunk size is 4KB.

Figure 8(c) shows the result of Word trace. We tuned
the replay of Word trace for Dropbox by increasing the
latency between consecutive updates in order to get its best
performance, otherwise Dropbox would directly uploads files
without using rsync, which transmits 5 times larger than the
number shown in Figure 8(c). However, the best performance
of Dropbox still shows nearly 200MB data transmission. The
reason is that it employs 4MB deduplication and rsync is only
applied within the 4MB block, impacting the effect of delta
encoding a lot [38]. Though Seafile shows relatively low CPU
overhead, it does not perform well on the network usage, about
470MB data are transmitted from client to server due to large
chunk size. NFS uploads extremely large amount of data, since

it sends all the write operations. It is surprising that the NFS
server also sends similar amount of data back to the client
though there is no read operation in the trace. This is because
Word first writes the file’s new version in a temporary file tmp
and then renames tmp to its original name f. Though tmp’s
content is cached on the client, f ’s content becomes stale, so
its new content will be retrieved from the server again [40].
DeltaCFS uploads much less data than other solutions as it
employs rsync on the whole file. There is almost no data
transmitted from server to client, since the generation of
incremental data does not require the involvement of servers.
Dropbox also performs well on the download direction due to
the offloading of checksum calculation from server to client as
mentioned above, which also avoids downloading checksums.

Figure 8(d) shows the result of WeChat trace. Seafile still
keeps its large data transmission, again due to large chunk size.
Dropbox, however, uploads much less data, because there is
no data shift in SQLite files, 4MB deduplication works well
in this case. And as we expected, NFS performs well. It still
downloads some data because of those non-aligned data writes,
in which case the data block is first retrieved from the server,
i.e., the fetch-before-write problem [41]. DeltaCFS presents
similar amount of uploaded data to NFS, and it is a little higher
because DeltaCFS has to send some control information such
as files’ versions.

To further understand the performance numbers of WeChat
trace, we also use rsync algorithm to figure out how large
the incremental data would be for this trace, the result is
around 30MB which is larger than Dropbox and DeltaCFS.
Dropbox shows much lower amount of data than this number,
we suspect it applies data compression (e.g., Snappy [42]). The
reason why DeltaCFS transfers less data than this number is
that the delta encoding granularity of rsync is 4KB while the
file modifications in the WeChat trace are usually smaller than
4KB, in which case directly sending IO operations is more
efficient.

2) Experiments on mobile: Figure 9(a) shows the upload
traffic on the mobile phone. For append write and random
write, Dropsync uploads more than 150MB data, this is
consistent with its CPU consumption. The size of uploaded
data is smaller in append write than in random write because
the file in append write is increased from 0 byte, smaller data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Dropbox Seafile NFSv4 DeltaCFS

N
et

w
or

k
(M

B
)

Upload
Download

(a) Append Write

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Dropbox Seafile NFSv4 DeltaCFS

N
et

w
or

k
(M

B
)

Upload
Download

(b) Random Write

 0

 10

 20

 30

 40

Dropbox Seafile NFSv4 DeltaCFS

 200
 400
 600
 800

 1000

N
et

w
or

k
(M

B
)

Upload
Download

(c) Word Trace

 0

 10

 20

 30

Dropbox Seafile NFSv4 DeltaCFS

 100

 150

 200

 250

 300

N
et

w
or

k
(M

B
)

Upload
Download

(d) WeChat Trace

Fig. 8. Network traffic of experiments on PC.

 0

 10

 20

 30

 40

Append Random Word WeChat

 120

 150

 180

 210

N
et

w
or

k
(M

B
)

Dropsync
DeltaCFS

(a) Upload Traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Append Random Word WeChat

N
et

w
or

k
(M

B
)

Dropsync
DeltaCFS

(b) Download Traffic

Fig. 9. Network traffic of experiments on mobile.

TABLE III
COMPARISON OF PERFORMANCE ON MICROBENCHMARKS. DeltaCFSc

means DeltaCFS with checksum enabled. The unit is MB/s.

Workload Native FUSE DeltaCFS DeltaCFSc
Fileserver 116.0 114.7 78.3 66.9
Varmail 5.5 6.5 4.6 4.6
Webserver 18.8 19.6 19.6 19.5

are uploaded at the beginning of the trace replay. For Word
trace, Dropsync’s upload traffic is smaller than Dropbox in
Figure 8(c), because the mobile phone is less powerful, it
only completed limited numbers of sync actions, which has
the effect of batching file updates. WeChat trace on mobile has
similar upload traffic to Word trace also because of the wimpy
CPU and the unintentionally batch manner. DeltaCFS shows
similar numbers on mobile to that on PC, because we have
fully minimized its CPU overhead, which makes it perfectly
feasible to run on wimpy mobiles. Download traffic is small
as shown in Figure 9(b), DeltaCFS has almost no download
traffic, Dropsync downloads 3MB to 5MB data.

D. Local Read&Write Performance

We run the following experiments on a physical machine
which is equipped with 2 Quad-Core AMD Opteron(tm)
Processor 8380, 64GB memory, and runs Ubuntu 12.04 (kernel
3.2.0), to test the file IO performance of DeltaCFS client. In
this test, we drop the data dequeued from Sync Queue rather
than sending them to the server, in order to eliminate the im-
pact of limited network bandwidth. We run microbenchmarks
from filebench on different settings: native ext4, loopback
FUSE, and DeltaCFS. The results are shown in Table III.
For Fileserver, Native and FUSE show similar performance,
but actually the response latency of FUSE is nearly twice as
high as Native. This latency is covered by multi-thread IO
operations. For Varmail and Webserver, FUSE’s performance
is a little better due to FUSE kernel module’s file cache and

TABLE IV
RESULTS OF RELIABILITY TESTS. “Inconsistent” means the inconsistent

data due to system crash. “omit” means the file is ignored, neither
uploaded nor downloaded.

Services
Data Upload

Corrupted Inconsistent Causal

Dropbox upload upload/omit N
Seafile upload upload/omit N
DeltaCFS detect detect Y

prefetch mechanism [43]. DeltaCFS’s performance is lower
than FUSE for Fileserver and Varmail, because Sync Queue
becomes full very quickly. While this does not happen in
Webserver, that is why FUSE and DeltaCFS show the same
number. For Fileserver, DeltaCFS with checksum has less
throughput than that without checksum due to the additional
latency induced by checksum computation. While this latency
is not a problem for Varmail and Webserver, since it is very
small compared to disk seek latency. We believe that the
performance provided by DeltaCFS is enough for desktop and
mobile environment.

E. Data Consistency

We test the efficacy of the mechanisms in DeltaCFS for data
integrity and consistency, and compare it with Dropbox and
Seafile. The testbed file system is ext4 (configured as ordered
journaling), we inject corrupted data and crash inconsistent
data in it 5. For the data corruption experiment, we inject
corrupted data by flipping a bit in a file. After sync clients
are restarted, we write 1 byte to that file to see whether the
corrupted data is also uploaded. For the crash inconsistency
experiment, we cut off the power of the machine during a
file in the sync folder is being written. After the machine
is powered on, we first inject inconsistent data to simulate
crash inconsistency by writing data to the file bypassing
the file system 6. The results are shown in Table IV, as
expected, Dropbox and Seafile always upload the corrupted
data, whereas DeltaCFS finds out the corrupted data block. For
crash inconsistency, there is a high possibility that Dropbox
and Seafile will upload the inconsistent file, but not always.
This depends on whether they notice that this file is changed
(i.e., local version does not equal to the version on the cloud).

5We use debugfs tool to find out a file’s physical location, then directly
write the dev disk file to inject corrupted/inconsistent data.

6This simulates the common inconsistency of ordered journaling, where
data are changed while metadata are not.

DeltaCFS can find out the inconsistency in this file and prevent
it from being uploaded. At last, we tested the uploading order
by generating files of different sizes. DeltaCFS always follows
the update order when uploading those files, while Dropbox
and Seafile do not guarantee this order, small files are often
uploaded first.

V. RELATED WORK

Network file services. NFSv3/4 [37] is a popular network
file system, which is perfectly fit for LAN and also has been
widely deployed in data centers. Though some optimizations
have been proposed on NFS, such as client cache [44], file
lease, it still shows poor performance on WAN. This problem
is targeted by LBFS [5], which is a low-bandwidth network file
system. It designs content defined chunking (CDC) to dedupli-
cate chunks and only transfer modified chunks in an effective
manner. This mechanism is also employed in Seafile [3].
Cumulus [45] backups filesystem to the cloud which only
provides very simple storage interface (e.g., Amazon S3). It
mainly focuses on implementing incremental snapshot on the
cloud using the limited interface, and the targeted scenario
is relatively simple, no multi-client file sync and sharing.
Pangaea [46] is a wide-area file system which supports data
sharing among widely distributed users. It is built on decentral-
ized commodity computers, focusing on data availability and
replica consistency. Ori [47] is a file system replicated and
synced among multiple devices, a fully peer-to-peer solution,
supporting data sharing and file system snapshot. It also uses
CDC with the average chunk size of 4KB to implement
incremental snapshot and efficient data sync. Unlike Ori,
DeltaCFS uses cloud-based data sync, with further optimized
incremental data sync mechanism.
Cloud synchronization. The growth of cloud service pro-
motes the development of consumer oriented cloud storage
service (e.g., Dropbox, OneDrive). A number of research ef-
forts have been made, including performance measurement [2],
[15], [48]–[50], performance optimization [15], [38], [51], data
integrity/consistency [10], [16], data security [52], [53], and
new data sync framework [10], [54]. Among these works,
several popular personal cloud storage services are measured
in [48], [49], revealing some design choices employed in those
systems. ViewBox [16] measures data integrity and consis-
tency levels supported by those services, and designs mech-
anisms to prevent the propagation of corrupted/inconsistent
data. DeltaCFS also guarantees data consistency but through
a different and lightweight mechanism. UDS [15] batches
frequent, small file updates in order to reduce traffic overuse
existed in cloud storage services, which is a simple but
efficient way to reduce client’s overhead. However, these
systems still apply delta encoding for all types of files. In order
to guarantee the consistency between tabular and object data,
Simba [10] unifies the management of those data types and
provides high-level interfaces for mobile apps, but in order to
use their system existing applications should be modified a lot,
which needs considerable engineering efforts. On the contrary,
DeltaCFS does not require any modifications to applications.

Bluesky [54] is a network file system backed by cloud storage,
using cache mechanism to offer low latency data access. It is
still a full-blown NFS, while DeltaCFS targets on cloud data
sync scenario. It is possible to design a very high performance
network file system for wide area network based on DeltaCFS
as it has perfect incremental data sync performance.
Delta encoding and deduplication. Data compression [55]
and delta encoding [17]–[20] are commonly used to opti-
mize storage and network usage. TAPER [56] designs four
redundancy elimination phases, from coarse-grained dedu-
plication to fine-grained deduplication, finding tradeoff be-
tween computation overhead and network efficiency. Similarly,
REBL [17] combines compression, deduplication of content-
defined chunks, and delta-compression of similar chunks, to
achieve more effective data reduction. sDedup [57] focuses
on document-oriented database management systems, executes
delta encoding against similar documents to reduce data trans-
fer for replicated document DBMSs. DERD [18] dynamically
selects the base file which shows a sufficient resemblance from
a large collection of files. Since they belong to delta encoding,
some types of workload cannot be handled efficiently.

Deduplication techniques have been researched a lot [58].
These techniques are both designed for primary storage [59],
[60] and secondary or backup storage [61], [62]. They usually
leverage spatial locality and temporal locality of real-word
workloads to achieve good data access performance and dedu-
plication rate [59], [62], [63]. The granularity of deduplication
can be file-level [56], [64] or block-level [5], usually, block-
level presents better deduplication rate.

VI. CONCLUSION AND FUTURE WORK

Cloud sync services are experiencing an upsurge in pop-
ularity, which makes efficient service provisioning on both
client and server sides more and more crucial. In this paper,
we rethink the design of the cloud sync service, illustrate new
design opportunities, and propose a new cloud-based data sync
framework. In DeltaCFS, all types of files are synchronized
incrementally with minimized CPU consumption and network
traffic. In this design, the load of the server side is minimized
as well, servers simply apply incremental data on files. So
it becomes possible to use wimpy servers (e.g., Intel Atom
Processor) attached with large numbers of disks to provide
cloud data sync services. We leave system design on the server
side in future work.

ACKNOWLEDGMENT

We would like to thank our shepherd Michael A. Kozuch
for his guidance, and ICDCS reviewers for their valuable
feedback. This work is supported by State Key Program of
National Natural Science Foundation of China under Grant
No. 61232004, the High-Tech Research and Development
Program of China (“863–China Cloud” Major Program) under
grant 2015AA01A201, NSFC under Grant No. 61472009, and
Shenzhen Key Fundamental Research Projects under Grant
No. JCYJ20151014093505032.

REFERENCES

[1] “Dropbox,” https://www.dropbox.com/.
[2] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai,

and Z.-L. Zhang, “Towards Network-Level Efficiency for Cloud Storage
Services,” in Proceedings of the 14th ACM Internet Measurement
Conference (IMC), 2014, pp. 115–128.

[3] “Seafile,” https://www.seafile.com/en/home/.
[4] A. Tridgell, P. Mackerras et al., “The rsync Algorithm,” 1996.
[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A Low-Bandwidth

Network File System,” in Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP), 2001, pp. 174–187.

[6] “SoundHound Inc.” http://soundhound.com/.
[7] “1Password Collect all your passwords in one safe.” https://1password.

com/.
[8] “Use Continuity to connect your Mac, iPhone, iPad, iPod touch, and

Apple Watch,” https://support.apple.com/en-us/HT204681.
[9] “Collaboration Platform Performance & Continuity,” http://www.

metalogix.com/solution/collaboration-platform-performance-continuity.
[10] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu, “Reliable, Consistent,

and Efficient Data Sync for Mobile Apps,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST), 2015.

[11] “Dropbox adds new tools to make syncing
smarter,” http://www.pcworld.com/article/2043980/
dropbox-adds-new-tools-to-make-syncing-smarter.html.

[12] “SQLite,” https://sqlite.org.
[13] “How to backup up your iPhone, iPad, and iPod touch.” https://support.

apple.com/en-us/HT203977.
[14] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “A file is not a file: Understanding the i/o behavior of
apple desktop applications,” in Proceedings of 23rd ACM Symposium
on Operating Systems Principles (SOSP), 2011.

[15] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang, and
Y. Dai, “Efficient Batched Synchronization in Dropbox-like Cloud Stor-
age Services,” in Proceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware), 2013, pp. 307–327.

[16] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“ViewBox: Integrating Local File Systems with Cloud Storage Services,”
in Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST), 2014, pp. 119–132.

[17] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey, “Redundancy
Elimination Within Large Collections of Files,” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), 2004, pp. 59–72.

[18] F. Douglis and A. Iyengar, “Application-specific Delta-encoding via Re-
semblance Detection,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2003, pp. 113–126.

[19] J. MacDonald, “File System Support for Delta Compression,” Ph.D.
dissertation, Masters thesis. Department of Electrical Engineering and
Computer Science, University of California at Berkeley, 2000.

[20] T. Suel and N. Memon, “Algorithms for Delta Compression and Remote
File Synchronization,” 2002.

[21] “librsync in dropbox,” https://github.com/dropbox/librsync.
[22] “Seafile Data Model,” https://manual.seafile.com/develop/data model.

html.
[23] “WeChat: Connecting 800 million people with chat, calls, and more.”

https://www.wechat.com/en/.
[24] “Autosync Dropbox - Dropsync,” https://play.google.com/store/apps/

details?id=com.ttxapps.dropsync\&hl=en.
[25] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting Storage for

Smartphones,” in Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST), 2012.

[26] J. Li, A. Badam, R. Chandra, S. Swanson, B. L. Worthington, and
Q. Zhang, “On the Energy Overhead of Mobile Storage Systems,”
in Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST), 2014, pp. 105–118.

[27] “FUSE: Filesystem in Userspace,” http://fuse.sourceforge.net/.
[28] B. Cornell, P. A. Dinda, and F. E. Bustamante, “Wayback: A User-level

Versioning File System for Linux,” in Proceedings of Usenix Annual
Technical Conference (USENIX ATC), 2004, pp. 19–28.

[29] “What Is ZFS?” http://docs.oracle.com/cd/E23823 01/html/819-5461/
zfsover-2.html#gayou.

[30] “Btrfs,” https://btrfs.wiki.kernel.org/index.php/Main Page.
[31] “LevelDB: a light-weight, single-purpose library for persistence with

bindings to many platforms.” https://leveldb.org.

[32] S. C. Tweedie, “Journaling the Linux ext2fs filesystem,” in Proceedings
of the 4th Annual Linux Expo, 1998.

[33] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis and Evolution of Journaling File Systems,” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), 2005, pp. 105–
120.

[34] R. Alagappan, V. Chidambaram, T. S. Pillai, A. Albarghouthi, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Beyond Storage APIs:
Provable Semantics for Storage Stacks,” in Proceedings of 15th Work-
shop on Hot Topics in Operating Systems (HotOS XV), 2015.

[35] J. D. Valois, “Implementing Lock-Free Queues,” in Proceedings of the
7th international conference on Parallel and Distributed Computing
Systems, 1994, pp. 64–69.

[36] “Dokan: an user mode file system for Windows,” https://dokan-dev.
github.io/.

[37] “Network File System (NFS) version 4 Protocol,” https://www.ietf.org/
rfc/rfc3530.txt.

[38] S. Li, Q. Zhang, Z. Yang, and Y. Dai, “Understanding and Surpass-
ing Dropbox: Efficient Incremental Synchronization in Cloud Storage
Services,” in Proceedings of IEEE Globecom, 2015.

[39] “inotify - monitoring filesystem events.” http://man7.org/linux/
man-pages/man7/inotify.7.html.

[40] “Network File System (NFS) version 4 Protocol. 4.2.3. Volatile File-
handle. 9.3.4. Data Caching and File Identity,” https://www.ietf.org/rfc/
rfc3530.txt.

[41] D. Campello, H. Lopez, L. Useche, R. Koller, and R. Rangaswami,
“Non-blocking Writes to Files,” in Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST), 2015, pp. 151–
165.

[42] “Snappy,” http://google.github.io/snappy/.
[43] A. Rajgarhia and A. Gehani, “Performance and Extension of User Space

File Systems,” in Proceedings of the 25th ACM Symposium on Applied
Computing (SAC), 2010, pp. 206–213.

[44] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” ACM Transactions on Computer Systems (TOCS), vol. 10,
no. 1, pp. 3–25, 1992.

[45] M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem Backup
to the Cloud,” ACM Transactions on Storage (TOS), vol. 5, no. 4, p. 14,
2009.

[46] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam, “Taming
Aggressive Replication in the Pangaea Wide-Area File System,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 15–30, 2002.

[47] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazieres, “Repli-
cation, History, and Grafting in the Ori File System,” in Proceedings
of the 24th ACM Symposium on Operating Systems Principles (SOSP),
2013, pp. 151–166.

[48] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services,” in
Proceedings of the 12th ACM Internet Measurement Conference (IMC),
2012, pp. 481–494.

[49] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking
Personal Cloud Storage,” in Proceedings of the 13th ACM Internet
Measurement Conference (IMC), 2013, pp. 205–212.

[50] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
Public Cloud Providers,” in Proceedings of the 10th ACM Internet
Measurement Conference (IMC), 2010, pp. 1–14.

[51] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao, “QuickSync: Improving
Synchronization Efficiency for Mobile Cloud Storage Services,” in
Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking (MobiCom), 2015, pp. 592–603.

[52] M. Li, C. Qin, and P. P. Lee, “CDStore: Toward Reliable, Secure, and
Cost-Efficient Cloud Storage via Convergent Dispersal,” in Proceedings
of USENIX Annual Technical Conference (USENIX ATC), 2015.

[53] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Transactions on Computer Systems (TOCS), vol. 29, no. 4, p. 12, 2011.

[54] M. Vrable, S. Savage, and G. M. Voelker, “Bluesky: A Cloud-Backed
File System for the Enterprise,” in Proceedings of the 10th USENIX
conference on File and Storage Technologies (FAST), 2012, pp. 19–19.

[55] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Com-
puting Surveys (CSUR), vol. 19, no. 3, pp. 261–296, 1987.

[56] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered Approach for
Eliminating Redundancy in Replica Synchronization,” in Proceedings of

the 4th USENIX Conference on File and Storage Technologies (FAST),
2005, pp. 21–21.

[57] L. Xu, A. Pavlo, S. Sengupta, J. Li, and G. R. Ganger, “Reducing Repli-
cation Bandwidth for Distributed Document Databases,” in Proceedings
of ACM Symposium on Cloud Computing (SoCC), 2015.

[58] D. T. Meyer and W. J. Bolosky, “A Study of Practical Deduplication,”
ACM Transactions on Storage (TOS), vol. 7, no. 4, p. 14, 2012.

[59] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “iD-
edup: Latency-aware, inline data deduplication for primary storage,”
in Proceedings of the 10th USENIX Conference on File and Storage
Technologies (FAST), 2012, pp. 1–14.

[60] R. Koller and R. Rangaswami, “I/O Deduplication: Utilizing Content
Similarity to Improve I/O Performance,” ACM Transactions on Storage
(TOS), vol. 6, no. 3, p. 13, 2010.

[61] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge, “Extreme Bin-
ning: Scalable, Parallel Deduplication for Chunk-based File Backup,” in
Proceedings of IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2009, pp. 1–9.

[62] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble, “Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality,” in Proceedings of the 7th USENIX Conference
on File and Storage Technologies (FAST), 2009, pp. 111–123.

[63] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the Disk Bottleneck in
the Data Domain Deduplication File System,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST), 2008,
pp. 1–14.

[64] L. L. You, K. T. Pollack, and D. D. Long, “Deep Store: An Archival
Storage System Architecture,” in Proceedings of the 21st International
Conference on Data Engineering (ICDE), 2005, pp. 804–815.

